» » » Собственная электропроводность полупроводников

Физика / Полупроводниковая электроника

Собственная электропроводность полупроводников

 

Рассмотрим строение полупроводникового материала, получившего наиболее широкое распространение в современной электронике, – кремния (Si ). В кристалле этого полупроводника атомы располагаются в узлах кристаллической решетки, а электроны наружной электронной оболочки образуют устойчивые ковалентные связи, когда каждая пара валентных электронов принадлежит одновременно двум соседним атомам и образует связывающую эти атомы силу. Так как у элементов IV группы на наружной электронной оболочке располагаются по четыре валентных электрона, то в идеальном кристалле полупроводника все ковалентные связи заполнены, и все электроны прочно связаны со своими атомами (рис. 1.5).

При температуре абсолютного нуля (T = 0  K) все энергетические состояния внутренних зон и валентная зона занята электронами полностью, а зона проводимости совершенно пуста. Поэтому в этих условиях кристалл полупроводника является практически диэлектриком.

При температуре T > 0  К в результате увеличения амплитуды тепловых колебаний атомов в узлах кристаллической решетки дополнительной энергии, поглощенной каким-либо электроном, может оказаться достаточно для разрыва 


 

ковалентной связи и перехода в зону проводимости, где  электрон становится свободным носителем электрического заряда (рис. 1.6).

Электроны хаотически движутся внутри кристаллической решетки и представляют собой, так называемый электронный газ. Электроны при своем движении сталкиваются с колеблющимися в узлах кристаллической решетки атомами, а в промежутках между столкновениями они движутся прямолинейно и равномерно.

Одновременно с этим у того атома полупроводника, от которого отделился электрон, возникает незаполненный энергетический уровень в валентной зоне, называемый дыркой. Дырка представляет собой единичный положительный электрический заряд и может перемещаться по всему объему полупроводника под действием электрических полей, по законам диффузии в результате разности концентраций носителей заряда в различных зонах полупроводника, а также участвовать в тепловом движении.

Таким образом, в идеальном кристалле полупроводника при нагревании могут образовываться пары носителей электрических зарядов «электрон – дырка», которые обуславливают появление собственной электрической проводимости полупроводника.

Процесс образования пары «электрон – дырка» называют генерацией свободных носителей заряда. После своего образования пара «электрон – дырка» существует в течение некоторого времени, называемого временем жизни носителей электрического заряда.

В течение этого промежутка времени носители участвуют в тепловом движении, взаимодействуют с электрическими и магнитными полями как единичные электрические заряды, перемещаются под действием градиента концентрации, а затем рекомбинируют, т. е. электрон восстанавливает ковалентную связь. При рекомбинации электрона и дырки происходит высвобождение энергии. В зависимости от того, как расходуется эта энергия, рекомбинацию можно разделить на два вида: излучательную и безызлучательную.

Излучательной является рекомбинация, при которой энергия, освобождающаяся при переходе электрона на более низкий энергетический уровень, излучается в виде кванта света – фотона.

При безызлучательной рекомбинации избыточная энергия передается кристаллической решетке полупроводника, т.е. избыточная энергия идет на образование фононов – квантов тепловой энергии.

Следует отметить, что генерация пар носителей «электрон – дырка» и появление собственной электропроводности полупроводника может происходить не только под действием тепловой энергии, но и при любом другом способе энергетического воздействия на полупроводник – квантами лучистой энергии, ионизирующим излучением и т.д.

Теги

Похожие новости

Комменатрии к новости

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Написать свой комментарий:

Присоединяйтесь

Science21 — портал о самых горячих технологических трендах и новых технологиях.

Реклама на сайте

Цитата

Процесс научных открытий — это, в сущности, непрерывное бегство от чудес.

(Альберт Эйнштейн)